Source code for eisen.datasets.emidec_challenge

import os
import copy

from import Dataset

[docs]class EMIDEC(Dataset): """ This object allows Data from the EMIDEC challenge (2020) data to be easily impoted in Eisen. More information about the data and challenge can be found here Through this module, users are able to make use of the challenge data by simply specifying the directory where the data is locally stored. Therefore it is necessary to first download the data, store or unpack it in a specific directory and then instantiate an object of type ABCDataset which will make use of the directory structure and the descriptive json file included in it and make the data available to Eisen. For what concerns labels and data structure refer to the official website .. note:: This dataset returns the following fields: image, metadata and - during training - pathological and label. .. code-block:: python from eisen.datasets import EMIDEC dataset = EMIDEC( '/abs/path/to/data', True, False, transform, ) """
[docs] def __init__(self, data_dir, training, transform=None): """ :param data_dir: the base directory where the data is located (dataset location after unzipping) :type data_dir: str :param training: whether data relative to the training phase should be loaded :type training: bool :param transform: a transform object (can be the result of a composition of transforms) :type transform: callable .. code-block:: python from eisen.datasets import EMIDEC dataset = EMIDEC( data_dir='/abs/path/to/data', training=True, transform=transform, ) <json> [ {"name": "training", "type": "bool", "value": "True"} ] </json> """ self.data_dir = data_dir = training self.transform = transform self.dataset = [] directories = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d)) and ("." not in d)] for directory in directories: image_rel_path = os.path.join(directory, "Images", directory + ".nii.gz") with open( os.path.join(data_dir, directory.replace("_", " ") + ".txt"), "r", encoding="utf-8", errors="ignore", ) as file: metadata ="\n", "") entry = { "image": image_rel_path, "metadata": metadata, } if label_rel_path = os.path.join(directory, "Contours", directory + ".nii.gz") entry["label"] = label_rel_path if "P" in directory: entry["pathological"] = True else: entry["pathological"] = False self.dataset.append(entry)
def __len__(self): return len(self.dataset) def __getitem__(self, idx): item = copy.deepcopy(self.dataset[idx]) if self.transform: item = self.transform(item) return item


Access comprehensive developer documentation for Eisen

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources